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M A T H E M A T I C A L  M O D E L S  A N D  T O P O L O G I C A L  M E T H O D S  IN 

W I N G  A E R O D Y N A M I C S  

S.  K .  B e t y a e v  a n d  O .  P.  B r y s o v  UDC 532.527 

The current level of exactitude of order-of-magnitude estimation in hydrodynamics is based on extensive use of the 

asymptotic methods. Thus, in wing theory the Reynolds number Re is traditionally considered to be a large parameter, since, 
on one hand, in aviation it reaches values of 107 to 108, and, on the other hand, it is only this simplifying assumption that 

opens the way to mathematical modeling of the problem, specifically the use of the basically asymptotic Prandtl concept of the 

inviscid nature of the flow on the scales of the wing chord or wing span. 
Topological Methods. The unconventional dependences (obtainable with the aid of tunnel experimentation) of the 

integral and distributed aerodynamic characteristics on the angle of attack continue to amaze investigators with their hysteresis, 

spontaneously arising asymmetry, spirality, nonstationarity, and so on. Being a "black box," such an experiment does not make 

it possible to clarify the nature of the phenomenon. Various versions regarding the nature of the phenomenon and the flow 
schemes (topology) - -  and this means the mathematical models of the flow around the wing - -  are constructed on the basis of 
qualitative experimentation, with the aid of which, specifically, we can determine the topological properties of the isolines 

(usually the streamlines) on the surface of the wing or on the flow symmetry plane [1]. 
Since Re > > 1, we need to differentiate the field of the surface friction lines (limiting streamlines) right on the wing 

and the field of the surface streamlines of the inviscid flow at the outer edge of the boundary layer. The topography of the 
former is usually determined by the oil dot method, the topography of the latter is determined by the tuft method or by 

visualizing the near-wall stream filaments using an injectable dye. 
We note that in experimental aerodynamics the topographic methods determine an average (in time) field of the surface 

lines and therefore are suitable when the nonstationarity is small. 
We introduce on the plane stream surface the rectangular x, y coordinate system and denote the corresponding velocity 

components by u and v, and we direct the velocity component w that is normal to the plane along the z axis. Away from the 
vicinity of the separation line, we have from the nonpenetration condition w(x, y, z) = ZWo(X, y) + o(z). The potential of the 
laminar incompressible fluid flow is now determined not from the three-dimensional Laplace equation but rather from the two- 

dimensional Poisson equation with unknown right side (-w0).  Therefore we can not obtain complete information on the flow 

on the stream surface without solving the problem as a whole. 
The inviseid flow surface streamlines are the trajectories of the ordinary differential equation 

ay v 

Their topology is determined by the type and location of the singular points: u = v = 0. The surface streamline field is 
nonsolenoidal, since we have from the continuity equation 

au(x. y) ~(x, y) 
+ - -  _ _ w0(x, y) .  ax ay 

The nonsolenoidality of the surface streamline field indicates the possibility of the appearance of node-type singular points. We 

examine the solution in the vicinity of the singular point x = y = 0, assuming that the first derivatives of the velocity and the 

vorticity are finite. Then the normal to the surface z = 0 component of the vorticity vector in this vicinity is constant and equal 
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to Uy - v x. We fred from the vorticity transport equation, which reduces to the single-term condition of the absence of 

stretching and rotation of the vortex lines (Uy - -  Vx)A = 0, where A = w o (0, 0), that in the three-dimensional motion (A ;~ 

0) the normal component of  the vorticity is equal to zero, i.e., Uy = v x. The singular point of  the equation of the surface 

streamlines is a saddle if u~ - -  UxVy > 0 and is a node if u~ - -  UxVy > 0. 
Thus, in the framework of  the adopted assumption on finiteness of  the derivatives there are no focus-type singular 

points. This conclusion is valid if the plane z = 0 is a plane of symmetry. If  the plane z = 0 is the surface of  the wing, then, 

as experiment shows, focal singularities arise. Their appearance is apparently explained by the separated nature of  the flow, 

and this means by violation of the condition of finiteness of the gradient of  the velocity or the vorticity. 

In accordance with the no-slip condition, the projection of the viscous fluid flow velocity on the wing is proportional 
to z or z 2. The field of  the viscous fluid streamlines on the wing surface are the trajectories of the ordinary differential equation 

d y  Oulaz 

- I d x  Ou/Oz z = o" 

Since the Navie r -S tokes  equation is of  higher order than the Euler equation, no limitations on the coefficients of  the 

expansions of the velocity components in integer powers of z can be obtained from the N - S  equation. Consequently, 

singularities of  any types are possible in the flow of a viscous fluid, specifically at the base of  the boundary layer [2, 3]. 

In the general case no direct connection has been established between the singularities at the base of  the boundary layer 
and at its outer edge; they may be of different types and may be spaced at a finite distance from one another, defining two 

topologically different near-waU flow fields. The situation is disrupted when the vorticity extends from the depths of the 
boundary layer into the outer inviscid region. Thus, in the case of tornado-like separation a focal singularity is characteristic 
for both near-wall flow fields. 

Asymptotic  Wing Theory .  The flow around a wing depends on at least five principal dimensionless parameters: the 

aspect ratio X, the free stream Mach number M~., the angle of attack ~, the maximal relative wing thickness 8, and the 
Reynolds number Re. This large number of parameters makes the problem unsolvable, and further idealization is required for 

the construction of the mathematical model. We shall start from the tail end of this list of  parameters. We have already defined 
the value of Re as a large parameter, thereby converting to the Euler equations. The wing thickness is usually small, and its 

influence is considered to be linear everywhere except in the vicinity of  the edges of  the wing, where it is necessary to 

introduce a special expansion. Therefore, setting 8 = 0, we shall consider the wing surface to be plane. 

In connection with the broadening of the operational range of the angles of attack of the modern airplanes and missiles 

clear up to 180 ~ the quantity (x can take two values: c~ = 0(1) and c~ < <  1. In the first case the flow around the wing is 

subsonic if Mo, < 1, and supersonic if Moo > 1. In the second case the classification of the regimes is more complex: Mo. 
< 1) - -  subsonic linear theory, (M~. - -  1)(x -2/3 = O(1) - -  transonic theory, M~. > 1 - -  supersonic linear theory, M~.~ = 
O(1) - -  hypersonic theory. 

In asymptotic wing theory the only remaining parameter, which we have not yet dealt with, ~, is considered to be either 

large or small. In both approximations the vicinity of the wing is a narrow inner zone, in which the law of plane sections is 
valid: in the plane that is normal to the longitudinal coordinate of the zone the three-dimensional flow is equivalent to plane 
flow. 

Accordingly, we differentiate: wing profile theory (~ = oo), high aspect ratio wing theory (~ > >  1), finite aspect 

ratio wing theory (k = 0(1)), and low aspect ratio wing theory (k < <  1). 

39 



0 ~o <o,,s x~ 
1 o 

G 
o o,5<ao< 1,J 

o ~o--~3 

o o(o ~J,3 

Fig. 3 

a zA b xO= az'2 

Fig. 4 

In the framework of high aspect ratio wing theory there have been constructed mathematical models of subsonic flow 

[4] and transonic flow [5], and also of planing flow. The topology of the streamlines is trivial everywhere except for the side 

edges of the wing, since in the inner region, the scale of which is equal to the wing chord, the law of plane sections holds: 

the wing profiles are subject to flow independently of one another. 
In the theory of the wing of low aspect ratio there have been constructed mathematical models of subsonic, transonic, 

supersonic, and hypersonic flow around the wing, the model of the flow around the side edge of the rectangular [6, 7], and 

also the model of the flow around an elongated ship [8]. In the case of subsonic or supersonic flow in the inner region, the scale 
of which is equal to the wing span, for tx > >  X the stationary analogy with plane flow is valid: the wing cross sections are 

subject to flow independently of one another; for c~ = 0(1) the nonstationary analogy with plane flow is valid: the longitudinal 

coordinate plays the role of time [9, 10]. With account for flow separation from the side edges, we obtain the nontrivial 

topological patterns of the flow around the wing of low aspect ratio. An example of this pattern can be constructed if we use 

the unsteady analogy with plane flow and the exact solution of the plane problem in the so-called Nikol'skii flow case [11]. 
In accordance with the unsteady analogy, to the plane problem of the flow around a flat plate, traveling and expanding with 
a velocity that is proportional to t -1/2 (t is the time), there corresponds the flow around a wing of low aspect ratio that is 
parabolically curved in planform (Fig. la) and in the plane of symmetry (Fig. lb). The side edges of this wing are curved in 

accordance with the law 

and the centerline has the form 

z t = , t l  

Ix ~ 1/2 

, o, 

where l is the wing length; ), < <  1 is the aspect ratio; c~ 0 = 0(1) is the relative angle of attack. 
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the wing becomes "rectangular": [ z [ _< 1, x 1 > 0. Figure 2 demonstrates the streamline field on the upper surface of the wing 

as a function o f .  0, Fig. 3 shows the field on the lower surface. The topology changes for c~ 0 = 0.3, 0.54, and 1.3. The line 

of  symmetry z = 0 may be either a line of flow spreading (P) or a line of flow confluence (C). The arrows on the surface 

streamlines indicate the direction of  the relative velocity vector. The vertical arrows indicate the direction of  motion of the 

singular points with increase of c~ 0. A saddle-type singular point corresponds to the line of  flow convergence in the plane self- 

similar flow, and a node-type singular point corresponds to the line of flow spreading. In the Nikol'skii solution the line of 

flow separation (0) is degenerate, and the velocity on this line is continuous. Therefore the line of  flow separation coincides 
with the singular line (line of  flow confluence). 
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Linear theories for both subsonic flow [12] and supersonic flow [13, 14] have been developed for the thin wings of 

finite aspect ratio that are poskioned at a small angle of attack. The linear theories do not describe the singularities in the 

streamline field. 
Fundamental events take place on the upper surface of the wing of finite aspect ratio. We shall examine the behavior 

of the surface friction lines on the upper surface later, here we shall restrict ourselves to a discussion of the topological pattern 

of the flow past the lower surface of the wing of finite aspect ratio, which differs fundamentally from the pattern of the flow 

past the lower surface of the wing of low aspect ratio. In the case being examined for the traditional wing planforms the field 

of the surface streamlines contains only one singular point - -  a node N. The flow topology is shown schematically in Fig. 4a, 
b, respectively, for a triangular wing and a parabolic wing (x o = az2). 

The dependence of the node position x/l on the model angle of attack c~ was determined experimentally in the TsAGI 
GT-1 water tunnel (Re = 2.104) and in the TsAGI T-03 wind tunnel (Re = 5.2-105). 

In the water tunnel we tested five models with base width b = 80 mm: a) triangular wings with sweep angles X = 30 

and 600; b) parabolic wings of length l = 15 and 25 ram; c) a rectangular wing of length l =-30 mm. The dependence of x/l 

on o~ is shown in Fig. 5a. The solid curve is the relation calculated using the Rayleigh formula 

x 2 c o s a ( l  + s in2a)  + ( ~  --  a ) s i n a  + 2 

l ~ s i n a  + 4 ' 

which corresponds to the flow around a rectangular wing of'infinite span (flat plate) following the Helmholtz scheme. The 
agreement of the experimental data and this simple theory is satisfactory. Moreover, the dependence of x/l on a is universal 
- -  it is the same for all the wing planforms. 

It is considered that the Helmholtz scheme is sukable only for the flow of a liquid and is not applicable for the flow 

of a compressible gas. To determine the dependence of x/l on ~ in a compressible gas, experiments were performed in the T-03 
subsonic wind tunnel at low speeds (M~, = 0.1). We tested two triangular wing models with apex angle 30 and 60 degrees, 
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and also a rectangular wing model with aspect ratio 1.88. The dependence of x/l on o~ for these models is compared with the 

Rayleigh curve in Fig. 5b. Satisfactory agreement is again observed. 
Thus, the position of the nodal singularity on the lower surface of the wing is independent of both the wing planform 

and the properties of the moving continuum. We note that this law may not hold, for example, for the wing with reverse sweep, 

the assumed scheme of the flow around which with two nodes N and a saddle S is shown in Fig. 6. 
Flow around a Rectangular Wing. The asymptotic theory is valid when the parameter X is small 0x < <  1) or large 

(~ > >  1), but is invalid otherwise. The aerodynamics of the wing of finite aspect ratio that is set at a finite angle of attack, 
i.e., the region ot = O(X) = O(1) - -  is the realm of experiment [15-17] and computational hydrodynamics [18, 19]. A 

mathematical model of the flow around a wing of finite aspect ratio that is applicable in the entire angle-of-attack variation 
range has not yet been constructed, since this flow is accompanied by phenomena that are too complex. Of inestimable 

assistance in constructing-the mathematical model is a qualitative experiment, as a result of which there is established the flow 

topology that is necessary both for the verification of the numerical methods and for the development of the mathematical 

submodels describing the local properties of the flow. 
We studied in the T-03 wind tunnel with the aid of the oil dot method the pattern of the surface friction lines on the 

upper surface of a rectangular wing with chord 110 mm and aspect ratio 1.82. The wing was a flat plate with sharp edges. 
Three topologically different flow regimes were discovered. 

In the first regime, along with the spiral separation 2 from the side edges and the bubble-like separation from the 
leading edge 1 (leading-edge bubble), at small angles of attack there was observed a primary bubble 3 (Fig. 7a). Figure 7, a-c 

show the lines at the outer edge of the bubbles, the field of the surface friction lines, and the flow in the plane of symmetry 
AA. 

With increase of the angle of attack c~ to about 17 ~ the primary bubble expands, the line of flow attachment reaches 

the wing trailing edge, and, splitting, forms two tornado-like [tornadic] vortices (Fig. 8a), the initiators of which are two focal 
singularities in thesurface friction lines (Fig. 8b). Figure 8c shows the three-dimensional tornado-like vortex sheet. 

The third regime is realized when c~ > 25 ~ The tornado-like vortices break down, as the angle of attack approaches 

90 ~ the extensive leading-edge separation tends to occupy the entire upper surface of the wing, and the separation from the 
side edges becomes unsteady and multi-spiral (Fig. 9). 

The Psi-effect. The flow around the wing with aspect ratio X < 1 is characterized by greater topological diversity than 
the flow around the wing with X > 1. We studied in the T-03 wind tunnel two rectangular wing models: 1) X = 0.5, chord 
180 mm, span 90 mm; 2) X = 0.8, chord 150 mm, span 120 mm. 

When the angles of attack are small, the flow regime does not differ from that shown in Fig 7. With increase of the 
angle of attack, the primary bubble grows in size, with its ends remaining at the front corners of the wing, and the line of flow 

attachment moves toward the trailing edge. Then the growth of the primary bubble terminates and the flow separation zone 

breaks down, to which there corresponds the formation at ct = 28 ~ of two focal singularities F, shown in Fig. 10 (in Figs. 

43 



10-12 the upper diagrams are the photographs of the oil tracks, the lower diagrams are the corresponding maps of the friction 
lines). With increase of the angle of attack, the line of flow spreading L, located on the normal to the line of symmetry, 
contracts, degenerating at c~ = 38 ~ to a point - -  the node N, indicated in Fig. 11. It follows from the Poincar6 principle that 
a saddle point will be located near each focus in this figure. However we were not able to reliably detect these saddle 
singularities in the experiments. 

This is the topology of the flow around the wing with X = 0.5. For the wing with X = 0.8 the foci and the node 
appear practically simultaneously at an angle of attack ot = 28 ~ 

Further increase of the angle of inclination of the wing to the approaching flow leads to a situation in which there 
appears a line of flow spreading that is located on the axis of symmetry of the model (Fig. 12). The tail of this line finally 

reaches the edge of the wing. Then the separated zone that is adjacent to the wing leading edge expands; the regime of complete 
separation develops, bypassing (at least for the wing with ~ = 0.5) the stage that is shown in Fig. 9. 

The locus of the ends of the line of flow spreading describes as a function of t~ a curve in the form of a recumbent 
letter ~b (Fig. 13). This is the source of the name for this phenomenon --  the psi-effect. 

At the present time the tornado-like vortex is being studied using computational methods [19], therefore it is desirable 
to perform a numerical verification of all the topological regimes of the flow around wings and, in particular, the psi-effect. 

The authors wish to thank A. P. Gordienko and T. Yu. Gracheva for their assistance in performing the experiments. 
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